Get Answers to all your Questions

header-bg qa

A photosensitive metallic surface has work function \phi. If photon of energy 3 \phi fall on this surface, the electron comes out with a maximum velocity of 6 \times 10^6 \mathrm{~ms}^{-1}. When the photon energy is increased to 9 \phi, there maximum velocity of photoelectron will be:
 

Option: 1

12 \times 10^6 \mathrm{~m} / \mathrm{s}


Option: 2

6 \times 10^6 \mathrm{~m} / \mathrm{s}


Option: 3

3 \times 10^6 \mathrm{~m} / \mathrm{s}


Option: 4

24 \times 10^6 \mathrm{~m} / \mathrm{s}


Answers (1)

best_answer

 The relation between the energy and the work function of the electron is given as:

\mathrm{E}=\phi+\frac{1}{2} \mathrm{mv}^2

For the total energy of 3 \phi, the expression can be written as:

\begin{aligned} & 3 \phi=\phi+\frac{1}{2} \mathrm{mv}_1^2 \\ & \frac{1}{4} \mathrm{m} v_1^2=\phi \end{aligned}

 Now, the energy provided is 9 \phi . So, it can be written as:

\begin{aligned} & 9 \phi=\phi+\frac{1}{2} \mathrm{mv}_2^2 \\ & 8 \phi=\frac{1}{2} \mathrm{mv}_2^2 \end{aligned}

Substitute the value of \phi.

\begin{aligned} & 8 \times \frac{1}{4} \mathrm{mv}_1^2=\frac{1}{2} \mathrm{mv}_2^2 \\ & \mathrm{v}_2=\sqrt{4 \mathrm{v}_1^2} \\ & \Rightarrow \sqrt{4 \times 36 \times 10^{12}} \\ & \mathrm{v}_2=12 \times 10^6 \mathrm{~m} / \mathrm{s} \end{aligned}

Posted by

jitender.kumar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE