Get Answers to all your Questions

header-bg qa

At room temperature the r.m.s. speed of the molecules of certain diatomic gas is found to be 1930 m/s the gas is :

Option: 1

F_2


Option: 2

O_{2}


Option: 3

H_{2}


Option: 4

Cl_{2}


Answers (1)

best_answer

As we learned

Pressure due to an ideal gas is given as -

P= \frac{1}{3}\rho \: v^{2}
    = \frac{1}{3}\left ( \frac{M}{V} \right ) \cdot \: v^{2}

- wherein

M= m\cdot N

m= mass of one molecule

N = Number of  molecule

v^{2}=(v_{1}^{2}+v_{2}^{2}+..........)/n

v = RMS velocity

 

 

P= \frac{1}{3}\: \rho v^{2}\\*\\* =\frac{1}{3}\left ( \frac{M}{V} \right )v^{2}\\*\\* PV=\frac{1}{3}Mv^{2}

M=\frac{3RT}{v^{2}}\: \: \: \left ( PV = RT \right )

M=\frac{3\times 8.3\times 300}{\left ( 1920 \right )^{2}}

M=2\times 10^{-3}kg= 2g

 

Gas is Hydrogen

Posted by

Sanket Gandhi

View full answer