Get Answers to all your Questions

header-bg qa

A conducting metal circular-wire-loop of radius r is placed perpendicular to a magnetic field which varies with time as
 B = B_{0}e^{-t/\tau } ,  where B0 and  \tau are constants, at time t = 0.  If the resistance of the loop is R then the heat generated in the loop after a long time \left ( t\rightarrow \infty \right ) is :

  • Option 1)

    \frac{\pi ^{2}r^{4}B_{0}^{4}}{2\tau R}

  • Option 2)

    \frac{\pi ^{2}r^{4}B_{0}^{2}}{2\tau R}

  • Option 3)

    \frac{\pi ^{2}r^{4}B_{0}^{2} R}{\tau }

  • Option 4)

    \frac{\pi ^{2}r^{4}B_{0}^{2} }{\tau R }

 

Answers (1)

best_answer

As we have learned

Induced Current -

I= \frac{\varepsilon }{R}=\frac{-N}{R}\frac{d\phi }{dt}
 

- wherein

R\rightarrow Resistance

\frac{d\phi }{dt}\rightarrow Rate of change of flux

 

 

B = B_0 e^{ -t / \tau }

 

 

Heat generated = \int_{0}^{\infty }i^2 Rdt

 

\int_{0}^{\infty } \frac{\varepsilon _{ind}^2}{Rt}Rdt = \frac{1}{R } \int_{0}^{\infty } {\varepsilon _{ind}^2}dt

 

\frac{1}{R } \frac{\pi ^2 r^ 4 B_{0}^{2}}{\tau ^2 }\cdot \int_{0}^{\infty }e^{-2t/\tau }dt

= \frac{\pi ^2 r^4B_{0}^{2}}{R\tau ^2}\frac{e^{-2t/\tau }}{-2/\tau }|_{0}^{\infty }

H = \frac{\pi ^2 B_{0}^{2}r^4}{2 R \tau }

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Option 1)

\frac{\pi ^{2}r^{4}B_{0}^{4}}{2\tau R}

Option 2)

\frac{\pi ^{2}r^{4}B_{0}^{2}}{2\tau R}

Option 3)

\frac{\pi ^{2}r^{4}B_{0}^{2} R}{\tau }

Option 4)

\frac{\pi ^{2}r^{4}B_{0}^{2} }{\tau R }

Posted by

Avinash

View full answer