Get Answers to all your Questions

header-bg qa

Find the equilibrium constant for the reaction given at \mathrm{350\; K} if \mathrm{\Delta H^{0}=75.3\; kJ\; mol^{-1}}  and \mathrm{\Delta S^{0}=120\; J\; K^{-1}\; mol^{-1}}.

\mathrm{PCl_{5}\left ( g \right )\rightarrow PCl_{3}\left ( g \right )+Cl_{2}(g)}

Option: 1

1.958\times 10^{-4}


Option: 2

-1.958\times 10^{-4}


Option: 3

1.074\times 10^{-5}


Option: 4

-1.074\times 10^{5}


Answers (1)

best_answer

As we have learnt,

\begin{array}{l}{\text { Relationship between } \Delta \mathbf{G}^{\circ} \text { and Equilibrium }} {\text { constant }\left(\mathbf{K}_{\mathrm{eq}}\right)}\end{array}

\mathrm{\Delta G^0 = -RTlnK_{eq}}

We know at standard conditions

\mathrm{\Delta G^{0}=\Delta H^{0}-T\Delta S^{0}}

Given data:

\mathrm{\Delta H^{0}=75.3\times 10^{3}J\; mol^{-1},\; \; T=350\; K}

\mathrm{\Delta S^{0}=120\; J\; K^{-1}mol^{-1},\; \; T=350\; K}

So, \mathrm{\Delta G^{0}=75300-350\times 120=33300}

Now, 

\mathrm{\Delta G^{0}=-2.303\; RT\; log\; K_{p}}

\mathrm{-33300=2.303\times 8.314\times 350\times log\; K_{p}}

Hence, \mathrm{K_{p}=1.074\times 10^{-5}}

Therefore, Option (3) is correct.

Posted by

Ritika Jonwal

View full answer