Get Answers to all your Questions

header-bg qa

If the density of planet is \rho and a satellite is revolving in circular orbit of radius r then time of revolution vareies with density \rho as :

Option: 1

T\propto \sqrt{\rho }


Option: 2

T\propto \frac{1}{\rho}


Option: 3

T\propto \rho


Option: 4

T\propto \frac{1}{\sqrt{\rho}}


Answers (1)

best_answer

As we learn

Time period of satellite in terms of density -

T=\sqrt{\frac{3\pi}{G\rho }}    

\rho \rightarrow Density of planet

T\rightarrow Time period

G\rightarrow Gravitational constant

- wherein

\rho= 5478.4Kg/m^{3} for earth

 

 As we known 

T = \frac{2\pi r^{\frac{3}{2}}}{\sqrt{GM}}

M = \rho *\frac{4}{3}\pi r^{3}

so, T = \frac{2\pi r^{\frac{3}{2}}}{\sqrt{G\rho *\frac{4}{3}\pi R^{3}}}

T =\sqrt{\frac{3\pi }{G\rho }}

T \propto \frac{1}{\sqrt{\rho }}

 

Posted by

manish

View full answer