Get Answers to all your Questions

header-bg qa

In terms of resistance R and time T, the dimensions of ratio  \frac{\mu }{\epsilon } of the permeability \mu and permittivity \epsilon is :

Option: 1

\left [ RT^{-2} \right ]


Option: 2

\left [ R^{2}T^{-1} \right ]


Option: 3

\left [ R^{2} \right ]    


Option: 4

\left [ R^{2}T^{2} \right ]


Answers (1)

best_answer

As we have learnt in

The permittivity of free space -

\epsilon_{o}=\ M^{-1}L^{-3}T^{4}A^{2}

- wherein its unit is

\dpi{100} C^{-2}N^{1}m^{-2}

Permeability of free space -

Dimension of permeability of free space \mu_{o} -  M^{1}L^{1}T^{-2}A^{-2} 

- wherein

\frac{newton}{ampere^{2}} \ or \ \frac{henry}{metre}

Resistance (R) -

\dpi{100} ML^{2}T^{-3}A^{-2}

- wherein its unit is

ohm

Dimension of  \left [\mu \right ]= \left [ MLT^{-2}A^{-2} \right ]

Dimension of  \in = \left [ M^{-1}L^{-3}T^{4}A^{2} \right ]

Dimension of  Resistance R^{2} = \left [ M^{2}L^{4}T^{-6}A^{-4} \right ]

\left [ \frac{\mu }{\in } \right ] = \left [ M^{2}L^{4}T^{-6}A^{-4} \right ]

\therefore Dimension of  \left [ \frac{\mu }{\in } \right ]  is same as R^{2}

Correct answer is \left [ 3 \right ]

 

Posted by

Info Expert 30

View full answer