Get Answers to all your Questions

header-bg qa

The value of the integral \int \frac{dx}{cos^{6}x+sin^{6}x} is equal to

  • Option 1)

    loge (tanx - cotx) + c

  • Option 2)

    loge (cotx - tanx) + c

  • Option 3)

    tan-1 (tanx - cotx) + c

  • Option 4)

    none of these

 

Answers (1)

best_answer

As we learnt

Type of Integration by perfect square -

Integration in the form of 

(i) \int f(x+\frac{1}{x})(1-\frac{1}{x^{2}})dx

(ii) \int f(x-\frac{1}{x})(1+\frac{1}{x^{2}})dx

(iii) \int f(x^{2}+\frac{1}{x^{2}})(x-\frac{1}{x^{3}})dx

(iv) \int f(x^{2}-\frac{1}{x^{2}})(x+\frac{1}{x^{3}})dx

(v) \int \frac{(1\pm \frac{1}{x^{2}})dx}{x^{2}+\frac{1}{x^{2}}}

(vi) \int \frac{f(x)dx}{ax^{4}+2bx^{3}+cx^{2}+2bx+a}  

- wherein

(i) \rightarrow put   (x+\frac{1}{x})=t

(ii) \rightarrow put    (x-\frac{1}{x})=t

(iii) \rightarrow put  (x^{2}+\frac{1}{x^{2}})=t

(iv) \rightarrow put (x^{2}-\frac{1}{x^{2}})=t

(v) \rightarrow for 1+\frac{1}{x^{2}}   put    x-\frac{1}{x}=t

     \rightarrow for 1-\frac{1}{x^{2}}   put    x+\frac{1}{x}=t 

(vi) \rightarrow put (x+\frac{1}{x})=t  if  b\neq 0

            put(x^{2}+\frac{1}{x^{2}})=t if b= 0

 

 

 Let\: \: I = \int {\frac{{dx}}{{{{\cos }^6}x + {{\sin }^6}x}}} =\int {\frac{{{{\sec }^6}x}}{{1 + {{\tan }^6}x}}\;dx}

= \int {\frac{{{{(1 + {{\tan }^2}x)}^2}{{\sec }^2}x\;dx}}{{1 + {{\tan }^6}x}}}

If tanx = p, then sec2x dx = dp

I = \int {\frac{{{{(1 + {p^2})}^2}dp}}{{1 + {p^6}}}} = \int {\frac{{(1 + {p^2})}}{{{p^4} - {p^2} + 1}}} \;dp\; = \int {\frac{{{p^2}\left( {1 + \frac{1}{{{p^2}}}} \right)}}{{{p^2}\left( {{p^2} + \frac{1}{{{p^2}}} - 1} \right)}}} \;dp

= \int {\frac{{dk}}{{{k^2} + 1}}} = {\tan ^{ - 1}}(k) + c$              \; \; \; \; \; \; \; \; \left( {p - \frac{1}{p} = k,\;\left( {1 + \frac{1}{{{p^2}}}} \right)\;dp = dk} \right)$

= {\tan ^{ - 1}}\;\left( {p - \frac{1}{p}} \right) + c = {\tan ^{ - 1}}(\tan x - \cot x) + c$


Option 1)

loge (tanx - cotx) + c

Option 2)

loge (cotx - tanx) + c

Option 3)

tan-1 (tanx - cotx) + c

Option 4)

none of these

Posted by

Plabita

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE