Get Answers to all your Questions

header-bg qa

In the following fig. If the If Eccentricity is given by (e) = \frac{c}{a}

Then find the speed of the planet at perigee.

Option: 1

V_{p} = \sqrt{\frac{GM}{a}\left ( \frac{1+e}{1-e} \right )}


Option: 2

V_{p} = \sqrt{\frac{GM}{a}\left ( \frac{1}{1-e} \right )}


Option: 3

V_{p} = \sqrt{\frac{GM}{a}\left ( \frac{1}{1+e} \right )}


Option: 4

V_{p} = \sqrt{\frac{GM}{a}\left ( \frac{1-e}{1+e} \right )}


Answers (1)

best_answer

As we learn

Velocity of planet in terms of Eccentricity -

V_{a}=\sqrt{\frac{GM}{a}\left ( \frac{1-e}{1+e} \right )}

V_{p}=\sqrt{\frac{GM}{a}\left ( \frac{1+e}{1-e} \right )}

V_{A}= Velocity of planet at apogee

V_{p}= Velocity of perigee

- wherein

Eccentricity (e) = \frac{c}{a}

r_{p}=a-c

r_{a}=a+c

 

 Applying consevation of angular momentum at perigee and apogee

mv_{p}r_{1} = mv_{a}r_{2} = \frac{v_{p}}{v_{a}} = \frac{r_{2}}{r_{2}} = \frac{a+c}{a-c}

\frac{v_{p}}{v_{a}} = \frac{1+\frac{c}{a}}{1-\frac{a}{c}} = \frac{1+e}{1-e}.....(1 )

Apply energy conservation at perigee and apogee

\frac{1}{2}mv_{p}^2-\frac{GMm}{r_{1}}=\frac{1}{2}mv_{a}^2-\frac{GMm}{r_{2}}

v_{p}^2-v_{a}^2=2GM(\frac{1}{r_{1}}-\frac{1}{r_{2}}).....(2)

v_{a}=\frac{r_{1}}{r_{2}}v_{p}    Put in (2)

v_{p}^2-(\frac{r_{1}}{r_{2}}v_{p})^2=2GM(\frac{1}{r_{1}}-\frac{1}{r_{2}}).....(2)

After solving we get 

V_{p} = \sqrt{\frac{GM}{a}\left ( \frac{1+e}{1-e} \right )}

 

 

 

 

 

Posted by

Sayak

View full answer