Get Answers to all your Questions

header-bg qa

The coefficient of apparent expansion of mercury in a glass vessel is 153\times 10^{-6}/_^{0}\textrm{C}   and in a steel vessel is 144\times 10^{-6}/_^{0}\textrm{C} . If a steel is 12\times 10^{-6}/_^{0}\textrm{C}  then for that of the glass is 

 

 

 

 

Option: 1

9\times 10^{-6}/_^{0}\textrm{C}


Option: 2

6\times 10^{-6}/_^{0}\textrm{C}


Option: 3

36\times 10^{-6}/_^{0}\textrm{C}


Option: 4

27\times 10^{-6}/_^{0}\textrm{C}


Answers (1)

best_answer

As we learned

 

If Delta theta negative -

C=\frac{Q}{m(-\Delta \theta)}

- wherein

The fall in temperature of the gas due to expansion would be greater than the rise in temperature of the gas due to heat supplied.

 

  ??

r_{real}=r_{app}+r_vessel

so \left ( r_{app} +r_{vessel}\right )_{glass}= \left ( r_{app} +r_{vessel} \right )_{steet}

or 153\times 10^{-6}+r_vessel, glass=144\times 10^{-6}+r_vess;steet

36\times 10^{-6}/^{0}\textrm{C}

r_{vesses, glass}=144\times 10^{-6}/^{0}\textrm{C}

\therefore \alpha =9\times 10^{-6}/^{0}\textrm{C}

Posted by

Devendra Khairwa

View full answer