Get Answers to all your Questions

header-bg qa

The depression in freezing point observed for a formic acid solution of concentration 0.5 \mathrm{~mL} \mathrm{~L}^{-1} is 0.0405^{\circ} \mathrm{C}. Density of formic acid is 1.05 \mathrm{~g} \mathrm{~mL}^{-1}. The Van't Hoff factor of the formic acid solution is nearly :
(Given for water\mathrm{k}_{\mathrm{f}}=1.86 \; \mathrm{k}\; \mathrm{kg}\; \mathrm{mol}^{-1} )

Option: 1

0.8
 


Option: 2

1.1


Option: 3

1.9

 


Option: 4

2.4


Answers (1)

best_answer

We know, \mathrm{\Delta T=ik_{f}m......(1)}

given, \mathrm{k_{f}}=1.86\; \mathrm{k} \; \mathrm{Kg}\; \mathrm{mol}^{-1}\; (\mathrm{solvent=water})

\mathrm{molality(m)=\frac{mole\; of \; solute}{Solvent(kg)}}

Now, concentration of formic acid \mathrm{[HCOOH]=0.5\; mL\; L^{-1}} means \mathrm{0.5\; mL\;of\; [HCOOH]} is present in 1 litre \mathrm{H_{2}O}

So, Mass \mathrm{HCOOH=0.5\; ml \times Density=0.5\times1.05 \; g=0.525\; g}

So, 0.525 g of \mathrm{HCOOH} is present in 1 litre of water

then \mathrm{Molality=\frac{Mass \; of \; HCOOH}{Molar\; mass\; of\; HCOOH \times Solvent(kg)}}

\mathrm{m=\frac{0.525}{4.6 \times 1}\; \; \; \; \; \; \; [\because 1 L, H_{2}O=1 kg \; of\; H_{2}O]}

Put all value in (1)

\mathrm{\Delta T_{f}=i k_{f} m=i \times 1.86 \times \frac{0.525}{46 \times 1}}

\mathrm{0.0405 =i \times 1.86 \times \frac{0.525}{46}}

\mathrm{i = 1.9 (Van's \; Hoff\; factor)}

Hence, the correct answer is Option (3).

Posted by

Ajit Kumar Dubey

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE