Get Answers to all your Questions

header-bg qa

Two equations are given below :

\text { i. } \oint \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \overrightarrow{\mathrm{A}}=\frac{\mathrm{Q}}{\varepsilon_{0}} \quad \text { ii. } \quad \oint \overrightarrow{\mathrm{B}} \cdot \mathrm{d} \overrightarrow{\mathrm{A}}=0

 

Option: 1

i.  Ampere's law
ii.  Gauss' law for electricity


Option: 2

i. - Gauss' law for electric fields
ii. - Gauss' law for magnetic fields


Option: 3

i. - Faraday's law
ii.  Gauss' law for electric fields


Option: 4

Both i. and ii. represent Faraday's Iaw


Answers (1)

best_answer

Maxwell's equations -

Maxwell's equations

The four Maxwell's equations and Lorentz force law together constitute the foundations of classical electromagnetism. Maxwell's equations are:

                                \begin{array}{ll}{\text { 1. } \oint \mathbf{E} \cdot \mathrm{d} \mathbf{A}=\mathrm{Q} / \varepsilon_{0}} & {\text { (Gauss's Law for electricity) }} \\ \\ {\text { 2. } \oint \mathbf{B} \cdot \mathrm{d} \mathbf{A}=0} & {\text { (Gauss's Law for magnetism) }} \\ \\ {\text { 3. } \oint \mathbf{E} \cdot \mathrm{d} \mathbf{l}=\frac{-\mathrm{d} \phi_{\mathrm{B}}}{\mathrm{d} t}} & {\text { (Faraday's Law) }} \\ \\ {\text { 4. } \oint \mathbf{B} \cdot \mathrm{d} \mathbf{l}=\mu_{0} i_{\mathrm{c}}+\mu_{0} \varepsilon_{0} \frac{\mathrm{d} \phi_{E}}{\mathrm{d} t}} & {\text { (Ampere-Maxwell Law) }}\end{array}

 Gauss law of electrostatics: the total flux linked with a closed surface is    \frac{1}{\varepsilon _{0}}  times the charge enclosed by the closed surface. 

 

 Gauss law of magnetism:  the total flux linked with a closed surface is     \mu_o times the magnetic charge equivalent (pole strength -m) enclosed by the closed surface

As the monopoles do not exist, the total magnetic charge equivalent (+m + (-m) =0) of a dipole is zero.

Hence, option (2) is the correct answer.

 

Posted by

Suraj Bhandari

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE