Get Answers to all your Questions

header-bg qa

Under the condition of weightlessness due to rotation of earth, what is the angular velocity of earth at equator?

Option: 1

\frac{1}{400}rad/sec


Option: 2

\frac{1}{200}rad/sec


Option: 3

\frac{1}{800}rad/sec


Option: 4

\frac{1}{1600}rad/sec


Answers (1)

best_answer

As we learnt

 

Weight less ness due to rotation of earth -

 

g'=g-\omega ^{2}R\cos ^{2}\lambda

O=g-\omega ^{2}R\cos ^{2}0

\lambda =0  (For equator)

g' =0

g-\omega ^{2}R=0

\omega =\sqrt{\frac{R}{g}}

\omega \rightarrow Angular velocity

- wherein

\omega \rightarrow Angular velocity for which a body at the equator will become weightless

 

 

\omega =\sqrt{\frac{R}{g}}\Rightarrow \omega = \sqrt{\frac{10}{6400*10^3}}rad/sec

\omega =\frac{1}{\sqrt{64}*10^2}= \frac{1}{800}rad/sec

 

Posted by

Pankaj Sanodiya

View full answer