Get Answers to all your Questions

header-bg qa

Two walls of thickness d_1 and d_2  and thermal conductivities  K_1 and K_2 are in contact. In the steady state if the temperatures at the inner surface are T1 and the temperatures at the outer surface  T_2 , the temperature at the common wall is

Option: 1

\frac{K_1T_1d_2 + K_2T_2d_1}{K_1d_2 + K_2d_1}


Option: 2

\frac{K_1T_1 + K_2T_2}{d_2 + d_1}


Option: 3

\frac{K_1d_2 + K_2d_1}{T_1 + T_2}


Option: 4

\frac{K_1T_1d_1 + K_2T_2d_2}{K_1d_1 + K_2d_2}


Answers (1)

best_answer

Temperature of Interface (Junction Temperature) -

\theta=\frac{\frac{K_{1}}{l_{1}}\theta_{1}+\frac{K_{2}}{l_{2}}\theta_{2}}{\frac{K_{1}}{l_{1}}+\frac{K_{2}}{l_{2}}}

 Let the temperature at the junction be T

\Rightarrow \frac{K_1(T_1 - T)A}{d_1} = \frac{K_2(T - T_2)A}{d_2}

\Rightarrow K_1T_1d_2 - K_1Td_2 = K_2d_1T - K_2d_1T_2

\Rightarrow T = \frac{K_1T_1d_2 + K_2d_1T_2}{K_1d_2 + d_1K_2}

Posted by

Rishabh

View full answer

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks