Get Answers to all your Questions

header-bg qa

Q : 4        If a,b and c are real numbers, and

               \Delta =\begin{vmatrix} b+c & c+a &a+b \\ c+a &a+b &b+c \\ a+b & b+c & c+a \end{vmatrix}=0

             Show that either a+b+c=0 or a=b=c

Answers (1)

best_answer

We have given \Delta =\begin{vmatrix} b+c & c+a &a+b \\ c+a &a+b &b+c \\ a+b & b+c & c+a \end{vmatrix}=0

Applying the row transformations; R_{1} \rightarrow R_{1} +R_{2} +R_{3} we have;

\Delta =\begin{vmatrix} 2(a+b+c) & 2(a+b+c) &2(a+b+c) \\ c+a &a+b &b+c \\ a+b & b+c & c+a \end{vmatrix}

Taking out common factor 2(a+b+c) from the first row;

\Delta =2(a+b+c)\begin{vmatrix} 1 & 1 &1 \\ c+a &a+b &b+c \\ a+b & b+c & c+a \end{vmatrix}

Now, applying the column transformations; C_{1}\rightarrow C_{1} - C_{2}\ and\ C_{2} \rightarrow C_{2}- C_{3}

we have;

=2(a+b+c)\begin{vmatrix} 0 & 0 &1 \\ c-b &a-c &b+c \\ a-c & b-a & c+a \end{vmatrix}

=2(a+b+c)[(c-b)(b-a)-(a-c)^2]

=2(a+b+c)[ab+bc+ca-a^2-b^2-c^2]

and given that the determinant is equal to zero. i.e., \triangle = 0

(a+b+c)[ab+bc+ca-a^2-b^2-c^2] = 0

So, either (a+b+c) = 0 or [ab+bc+ca-a^2-b^2-c^2] = 0.

we can write [ab+bc+ca-a^2-b^2-c^2] = 0 as;

\Rightarrow -2ab-2bc-2ca+2a^2+2b^2+2c^2 =0

\Rightarrow (a-b)^2+(b-c)^2+(c-a)^2 =0

\because (a-b)^2,(b-c)^2,\ and\ (c-a)^2 are non-negative.

Hence (a-b)^2= (b-c)^2=(c-a)^2 = 0.

we get then a=b=c

Therefore, if given \triangle = 0 then either (a+b+c) = 0 or a=b=c.

 

 

 

Posted by

Divya Prakash Singh

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads