Get Answers to all your Questions

header-bg qa

If the sum of lengths of hypotenuse and a side of a right angled triangle is given, show that area of triangle is maximum, when the angle between them is \frac{\pi }{3}\cdot

 

 

 

 
 
 
 
 

Answers (1)

Let ABC be a right angled triangle with base BC = x   AB = y such that x+y= k (constant)
Let a be the andle between base and hypotaneous
Let A be the area of triangle then,

A= \frac{1}{2}\times BC\times AC
    = \frac{1}{2}\times \sqrt{y^{2}-x^{2}}
\Rightarrow A^{2} = \frac{x^{2}}{4}\left ( y^{2}-x^{2} \right )\left ( \because y= k-x \right )
\Rightarrow A^{2} = \frac{x^{2}}{4}\left [ \left ( k-x \right )^{2}-x^{2} \right ]
\Rightarrow A^{2} = \frac{k^{2}x^{2}-2kx^{2}}{4}---(i)
Differentiating w.r.t x, we get
\Rightarrow \frac{dA}{dx}= \frac{k^{2}x-3kx^{2}}{4A}
For maximum or minimum. we have
\frac{dA}{dx}= 0\Rightarrow \frac{k^{2}x-3kx^{2}}{4A}= 0\Rightarrow x= \frac{k}{3}
Again differentiating (ii) w.r.t x, we get
2\left ( \frac{dA}{dx} \right )^{2}+\frac{2Ad^{2}A}{dx^{2}}= \frac{2k^{2}-12kx}{4}---(iii)
Putting \frac{dA}{dx}= 0 and x= \frac{k}{3} in (iii) we get
\frac{d^{2}A}{dx^{2}}= \frac{-k^{2}}{4A}< 0
Thus A is maximum when = \frac{k}{3} Now and x= \frac{k}{3} and y= k-x= k-\frac{k}{3}= \frac{2k}{3}
\therefore \cos \theta = \frac{x}{y}= \frac{\frac{k}{3}}{2\frac{k}{3}}= \frac{1}{2}
\theta = \cos^{-1}\left ( \frac{1}{2} \right )= \frac{\pi }{3} Hence proved

 

Posted by

Ravindra Pindel

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads