Get Answers to all your Questions

header-bg qa

Prove that :
                    \sqrt{\frac{\sec \theta -1}{\sec \theta +1}}+\sqrt{\frac{\sec \theta +1}{\sec \theta -1}}= 2\, cosec\, \theta

 

 

 
 
 
 
 

Answers (1)

To Prove \rightarrow \sqrt{\frac{\sec \theta -1}{\sec \theta +1}}+\sqrt{\frac{\sec \theta +1}{\sec \theta -1}}= 2\, cosec\, \theta
Proof \rightarrow Taking L.H.S
\sqrt{\frac{\left ( \sec \theta -1 \right )}{\left ( \sec \theta +1 \right )}\times \frac{\left ( \sec \theta -1 \right )}{\left ( \sec \theta -1 \right )}}+\sqrt{\frac{\left ( \sec \theta +1 \right )}{\left ( \sec \theta -1 \right )}\times \frac{\left ( \sec \theta +1 \right )}{\left ( \sec \theta +1 \right )}}         ( \therefore multiplying and dividing to make the denominater common )\Rightarrow \sqrt{\frac{\left ( \sec \theta -1 \right )^{2}}{\left ( \sec ^{2}\theta -1 \right )}}+\sqrt{\frac{\left ( \sec \theta +1^{2} \right )^{2}}{\left ( \sec ^{2}\theta -1^{2} \right )}}             \left [ \left ( a+b \right )\left ( a-b \right )= a^{2}-b^{2} \right ]
\Rightarrow \frac{\left ( \sec \theta -1 \right )+\left ( \sec \theta +1 \right )}{\sqrt{\left ( \sec ^{2}\theta -1 \right )}}
\Rightarrow \frac{2\sec \theta }{\sqrt{\tan ^{2}\theta }}                \left ( \therefore \sec ^{2}\theta = 1+\tan ^{2} \theta \right )
\Rightarrow \frac{2\sec \theta }{\tan \theta }
\Rightarrow 2\cdot \frac{1}{\cos \theta }\times \frac{\cos \theta }{\sin \theta }          \left ( \therefore \frac{1}{\cos \theta } = \sec \theta \right )
\Rightarrow \frac{2}{\sin \theta }
\Rightarrow 2\, cosec\, \theta                        \left ( \therefore \frac{1}{\sin \theta }= cosec\, \theta \right )
L.H.S = R.H.S
Hence proved
 

Posted by

Safeer PP

View full answer