Get Answers to all your Questions

header-bg qa

Choose the correct answer.

Q : 19        The area bounded by the \small y-axis, \small y=\cos x  and  \small y=\sin x  when  \small 0\leq x\leq \frac{\pi }{2}  is

                   (A)  \small 2(\sqrt{2}-1)        (B)  \small \sqrt{2}-1        (C)  \small \sqrt{2}+1        (D)  \small \sqrt{2}   

Answers (1)

best_answer

Given : \small y=\cos x  and  \small y=\sin x

 

Area of shaded region  = area of BCDB + are of ADCA

                                    =\int_{\frac{1}{\sqrt{2}}}^{1}x dy +\int_{1}^{\frac{1}{\sqrt{2}}}x dy

                                  =\int_{\frac{1}{\sqrt{2}}}^{1} cos^{-1} y .dy +\int_{1}^{\frac{1}{\sqrt{2}}} sin^{-1}x dy

                               =[y. cos^{-1}y - \sqrt{1-y^2}]_\frac{1}{\sqrt{2}}^1 + [x. sin^{-1}x + \sqrt{1-x^2}]_1^\frac{1}{\sqrt{2}}

                             = cos^{-1}(1)-\frac{1}{\sqrt{2}} cos^{-1}(\frac{1}{\sqrt{2}})+\sqrt{1-\frac{1}{2}}+\frac{1}{\sqrt{2}} sin^{-1}(\frac{1}{\sqrt{2}})+\sqrt{1-\frac{1}{2}}-1

                              =\frac{-\pi }{4\sqrt{2}}+\frac{1}{\sqrt{2}}+\frac{\pi }{4\sqrt{2}}+\frac{1}{\sqrt{2}}-1

                                =\frac{2}{\sqrt{2}} - 1

                                =\sqrt{2} - 1

Hence, the correct answer is B.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads