Get Answers to all your Questions

header-bg qa

Q : 5      Convert the following in the polar form:

              (i)   \small \frac{1+7i}{(2-i)^2}

Answers (1)

best_answer

Let 
z =\small \frac{1+7i}{(2-i)^2} = \frac{1+7i}{4+i^2-4i}= \frac{1+7i}{4-1-4i}= \frac{1+7i}{3-4i}

Now, multiply the numerator and denominator by  3+4i
\Rightarrow z = \frac{1+7i}{3-4i}\times \frac{3+4i}{3+4i}= \frac{3+4i+21i+28i^2}{3^2+4^2}= \frac{-25+25i}{25}= -1+i
Now,
let 
r\cos\theta = -1 \ \ and \ \ r\sin \theta = 1
On squaring both and then add
r^2(\cos^2\theta+\sin^2\theta)= (-1)^2+1^2
r^2=2
r = \sqrt2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (\because r > 0)
Now,
\sqrt2 \cos \theta = -1 \ \ and \ \ \sqrt2\sin \theta = 1
\cos \theta = -\frac{1}{\sqrt2} \ \ and \ \ \sin \theta = \frac{1}{\sqrt2}
Since the value of \cos \theta is negative and  \sin \theta  is positive  this is the case in II quadrant
Therefore,
\theta = \pi - \frac{\pi}{4}= \frac{3\pi}{4} \ \ \ \ \ \ \ \ \ \ \ \ (lies \ in \ II \ quadrant)
z = r\cos \theta + ir\sin \theta
    =\sqrt2\cos \frac{3\pi}{4} + i\sqrt2\sin \frac{3\pi}{4}
    =\sqrt2\left ( \cos \frac{3\pi}{4} + i\sin \frac{3\pi}{4} \right )
Therefore,  the required polar form is

 \sqrt2\left ( \cos \frac{3\pi}{4} + i\sin \frac{3\pi}{4} \right ) 
 

Posted by

Gautam harsolia

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads