Get Answers to all your Questions

header-bg qa

Q : 15 Find the distance of the line  \small 4x+7y+5=0  from the point  \small (1,2)  along the line \small 2x-y=0

Answers (1)

best_answer


point \small (1,2) lies on line 2x-y =0
Now, point of intersection of lines  2x-y =0    and    \small 4x+7y+5=0  is \left ( -\frac{5}{18},-\frac{5}{9} \right )
Now, we know that the distance between two point is given by 
d = |\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}|
d = |\sqrt{(1+\frac{5}{18})^2+(2+\frac{5}{9})^2}|
d = |\sqrt{(\frac{23}{18})^2+(\frac{23}{9})^2}|
d = \left | \sqrt{\frac{529}{324}+\frac{529}{81}} \right |
d = \left | \sqrt{\frac{529+2116}{324}} \right | = \left | \sqrt\frac{2645}{324} \right | =\frac{23\sqrt5}{18}
Therefore, the distance of the line  \small 4x+7y+5=0  from the point  \small (1,2)  along the line \small 2x-y=0  is   \frac{23\sqrt5}{18} \ units

Posted by

Gautam harsolia

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads