Find the equation of the plane through the points (2, 1, -1) and (-1, 3, 4) and perpendicular to the plane x - 2y + 4z = 10.
Given, a plane passes through the points (2, 1, -1) and (-1, 3, 4) and is perpendicular to the plane x - 2y + 4z = 10.
We want to find the equation of this plane.
We know, the Cartesian equation of a plane passing through (x1, y1, z1)
with direction ratios perpendicular to a, b, c for its normal is given as:
a (x - x1) +b (y - y1) + c (z - z1) = 0
Hence,
Let us consider the equation of the plane passing through (2, 1, -1) to be
a(x – 2) + b(y – 1) + c(z – (-1)) = 0
⇒ a(x – 2) + b(y – 1) + c(z + 1) = 0 …(i)
Since it also passes through point (-1, 3, 4) we just replace x, y, z by -1, 3, and 4 respectively.
⇒ a(-1 – 2) + b(3 – 1) + c(4 + 1) = 0
⇒ -3a + 2b + 5c = 0 …(ii)
Since a, b, and c are direction ratios and this plane is perpendicular to the plane x - 2y + 4z = 10, we just replace x, y, and z with a, b, and c respectively (neglecting 10) and we equate this to 0.
=> a - 2b + 4c = 0 …(iii)
To solve two equations x1a + y1b + z1c = 0 and x2a + y2b + z2c = 0, we use the formula
Similarly, to solve for equations (ii) and (iii):
That is,
Substituting these values of a, b, and c in equation (i), we get
Therefore, the required equation of the plane is 18x + 17y + 4z = 49.