Get Answers to all your Questions

header-bg qa

Find the equations of the line passing through the point (3, 0, 1) and parallel to the planes x + 2y = 0 and 3y - z = 0.

Answers (1)

Given, a line passes through a point P (3, 0, 1) and is parallel to the planes x + 2y = 0 and 3y - z = 0.

We must find the equation of this line.

Let the position vector of point P be

\vec{a}=3\hat{i}+0\hat{j}+\hat{k}

Or,

\vec{a}=3\hat{i}+\hat{k}.....(i)

Let us consider the normal to the given planes, that is, perpendicular to   the normal of the plane x + 2y = 0 and 3y - z = 0

Normal to the plane x + 2y = 0 can be given as \vec{n_{1}}=\hat{i}+2\hat{j}

Normal to the plane 3y - z = 0 can be given as \vec{n_{2}}=3\hat{j}-\hat{k}

So, \vec{n}   is perpendicular to both these normals.

So,

\vec{n}=\vec{n_{1}}\times \vec{n_{2}}

\Rightarrow \vec{n}=\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 0 \\ 0 & 3 & -1 \end{vmatrix}

Taking the 1st row and the 1st column, we multiply the 1st element of the row \left (a_{11} \right ) with the difference of products of the opposite elements \left (a_{22}\times a_{33}-a_{23} \times a_{32} \right ), excluding 1st row and 1st column

\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21}& a_{22} & a_{23} \\ a_{31}& a_{32} & a_{33} \end{vmatrix}=a_{11}\left ( a_{22} \times a_{33}-a_{23} \times a_{32} \right )

Here,

\begin{vmatrix} \hat{i}& \hat{j} & \hat{j} \\ 1& 2 & 0 \\ 0& 3 & -1 \end{vmatrix}=\hat{i}\left ( \left ( 2 \times -1 \right )-\left (0 \times 3 \right ) \right )

Now, we take the 2nd column and 1st row, and multiply the 2nd element of the row (a??) with the difference of the product of opposite elements \left (a_{21}\times a_{33}-a_{23} \times a_{31} \right )

\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21}& a_{22} & a_{23} \\ a_{31}& a_{32} & a_{33} \end{vmatrix}=a_{11}\left ( a_{22} \times a_{33}-a_{23} \times a_{32} \right )-a_{12}\left ( a_{21} \times a_{33}-a_{23} \times a_{31} \right )

Here

\begin{vmatrix} \hat{i}& \hat{j} & \hat{j} \\ 1& 2 & 0 \\ 0& 3 & -1 \end{vmatrix}=\hat{i}\left ( \left ( 2 \times -1 \right )-\left (0 \times 3 \right ) \right )-\hat{j}\left (\left ( 1 \times -1 \right )-\left ( 0 \times 0 \right ) \right )

Finally, taking the 1st row and 3rd column , we multiply the 3rd element of the row (a??) with the difference of the product of opposite elements  \left (a_{22}\times a_{33}-a_{23} \times a_{32} \right )  excluding the 1st row and 3rd column.

\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21}& a_{22} & a_{23} \\ a_{31}& a_{32} & a_{33} \end{vmatrix}=a_{11}\left ( a_{22} \times a_{33}-a_{23} \times a_{32} \right )-a_{12}\left ( a_{21} \times a_{33}-a_{23} \times a_{31} \right )+a_{13}\left ( a_{21} \times a_{32}-a_{22} \times a_{31} \right )

Here

\begin{vmatrix} \hat{i}& \hat{j} & \hat{j} \\ 1& 2 & 0 \\ 0& 3 & -1 \end{vmatrix}=\hat{i}\left ( \left ( 2 \times -1 \right )-\left (0 \times 3 \right ) \right )-\hat{j}\left (\left ( 1 \times -1 \right )-\left ( 0 \times 0 \right ) \right )+\hat{k}\left ( \left ( 1 \times 3 \right )-\left ( 2 \times 0 \right ) \right )

Futher simplifying it,

\Rightarrow \begin{vmatrix} \hat{i}& \hat{j} & \hat{j} \\ 1& 2 & 0 \\ 0& 3 & -1 \end{vmatrix}=\hat{i}\left ( -2-0 \right )-\hat{j}\left ( -1-0 \right )+\hat{k}\left ( 3-0 \right )\\ \\ \\ \Rightarrow \begin{vmatrix} \hat{i}& \hat{j} & \hat{j} \\ 1& 2 & 0 \\ 0& 3 & -1 \end{vmatrix}=-2\hat{i}+\hat{j}+3\hat{k}\\ \\ \\ \rightarrow \vec{n}=-2\hat{i}+\hat{j}+3\hat{k}

Therefore, the direction ratio is (-2, 1, 3) …(iii)

We know, vector equation of any line passing through a point and parallel to a vector is \vec{r}=\vec{a}+\lambda \vec{b} where \lambda \epsilon \mathbb{R}

Hence, from (i) and (ii),

\vec{a}=3\hat{i}+\hat{k}\\ \vec{n}=-2\hat{i}+\hat{j}+3\hat{k}

 

Putting these vectors in the equation \hat{r}=\hat{a}+\lambda \hat{n}\\

 

We get

\hat{r}=\left ( 3\vec{i}+\vec{k} \right )+\lambda \left ( -2\hat{i}+\hat{j}+3\hat{k} \right )

But we know,

\hat{r}=x\vec{i}+y\hat{j}+z\vec{k}

Substituting this,

\left (x\vec{i}+y\hat{j}+z\vec{k} \right )=\left ( 3\hat{i}+\hat{k} \right )+\lambda\left ( -2\hat{i}+\hat{j}+3\hat{k} \right )\\ \\ \Rightarrow \left (x\vec{i}+y\hat{j}+z\vec{k} \right )-\left ( 3\hat{i}+\hat{k} \right )=\lambda\left ( -2\hat{i}+\hat{j}+3\hat{k} \right )\\ \\ \Rightarrow x\hat{i}+y\hat{j}+z\hat{k}-3\hat{i}-\hat{k}=\lambda \left ( -2\hat{i}+\hat{j}+3\hat{k} \right )\\ \\ \Rightarrow \left ( x-3 \right )\hat{i}+y\hat{j}+\left ( z-1 \right )\hat{k}=\lambda \left ( -2\hat{i}+\hat{j}+3\hat{k} \right )\\ \\

Thus, the required equation of the line is \left ( x-3 \right )\hat{i}+y\hat{j}+\left ( z-1 \right )\hat{k}=\lambda \left ( -2\hat{i}+\hat{j}+3\hat{k} \right )\\ \\

 

Posted by

infoexpert24

View full answer