Get Answers to all your Questions

header-bg qa

25.   Find the sum of the following series up to n terms: \frac{1^3}{1} + \frac{1^3+2^3}{1+3}+ \frac{1^3+2^3+3^3}{1+3+5}+ ...

Answers (1)

best_answer

n term of series :

                 \frac{1^3}{1} + \frac{1^3+2^3}{1+3}+ \frac{1^3+2^3+3^3}{1+3+5}+ ........=\frac{1^3+2^3+3^3+..........n^3}{1+3+5+...........(2n-1)}

                                                                                                =\frac{\left [ \frac{n(n+1)}{2} \right ]^2}{1+3+5+............(2n-1)}

Here, 1,3,5............(2n-1) are in AP with first term =a=1 , last term = 2n-1, number of terms =n

 

1+3+5............(2n-1)=\frac{n}{2}\left [ 2(1)+(n-1)2 \right ]

                                                        =\frac{n}{2}\left [ 2+2n-2 \right ]=n^2

a_n=\frac{n^2(n+1)^2}{4n^2}

         =\frac{(n+1)^2}{4}

        =\frac{n^2}{4}+\frac{n}{2}+\frac{1}{4}

S_n=\sum _{k=1}^{n} a_k=\sum _{k=1}^{n} \frac{(k+1)^2}{4}

                        =\frac{1}{4}\sum _{k=1}^{n} k^2+\frac{1}{2}\sum _{k=1}^{n} k+\sum _{k=1}^{n}\frac{1}{4}

                     =\frac{1}{4}\frac{n(n+1)(2n+1)}{6}+\frac{1}{2}\frac{n(n+1)}{2}+\frac{n}{4}

                =n\left ( \frac{(n+1)(2n+1)}{24}+\frac{n+1}{4}+\frac{1}{4} \right )

                   =n\left ( \frac{(n+1)(2n+1)+6(n+1)+6}{24} \right )

                  =n\left ( \frac{2n^2+n+2n+1+6n+6+6}{24} \right )

                  =n\left ( \frac{2n^2+9n+13}{24} \right )

Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads