Get Answers to all your Questions

header-bg qa

Q (5) Find the value of 

\small (ii) \tan 15\degree

Answers (1)

\tan 15\degree = \tan (45\degree - 30\degree)
We know that,
                      
                           \left [ \tan(x-y)= \frac{\tan x - \tan y}{1+\tan x\tan y} \right ]
By using this we can write
                 
                  \tan (45\degree - 30\degree)= \frac{\tan 45\degree - tan30\degree}{1+\tan45\degree\tan30\degree}\\ \\ \Rightarrow \frac{1-\frac{1}{\sqrt{3}}}{1+1\left ( \frac{1}{\sqrt{3}} \right )} = \frac{\frac{\sqrt{3}-1}{\sqrt{3}}}{\frac{\sqrt{3}+1}{\sqrt{3}}} = \frac{\sqrt{3}-1}{\sqrt{3}+1}=\frac{\left ( \sqrt{3}-1 \right )^{2}}{\left ( \sqrt{3}+1 \right )\left ( \sqrt{3} -1\right )}=\frac{3+1-2\sqrt{3}}{\left ( \sqrt{3} \right )^{2}-\left ( 1 \right )^{2}}\\ \\ \Rightarrow \frac {4-2\sqrt{3}}{3-1}=\frac{2\left ( 2-\sqrt{3} \right )}{2}= 2-\sqrt{3}

                  

Posted by

Safeer PP

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads