Get Answers to all your Questions

header-bg qa

i) For any two complex numbers z1, z2 and any real numbers a, b, |az_1 - bz_2|^2 + |bz_1 + az_2|^2 =....

ii) The value of \sqrt{-25} * \sqrt{-9} is

iii) The number \frac{(1-i)^3}{1-i^3} is equal to .......

iv) The sum of the series i+i^2+i^3+...+i^{1000} upto 1000 terms is ...

v) Multiplicative inverse of 1 + i is ................

vi) If z_1 \ and \ z_2  are complex numbers such that z_1 + z_2 is a real number, then z_2 = 

vii) arg (z)+arg (\bar{z} ) (\bar{z}\neq0) is ....

viii) If |z+4|\leq 3then the greatest and least values of |z+1| are ..... and .....

ix) if \frac{z-2}{z+2}=\frac{\pi}{6}then the locus of z is .......

x) If |z|=4  and  arg (z) = \frac{5\pi}{6} then z=

Answers (1)

i) |az_1 - bz_2|^2 + |bz_1 + az_2|^2

=|az_1 |^2+|bz_2 |^2-2Re(az_1.b(\bar{z_2} ) +|bz_1 |^2+|az_2 |^2+2Re(az_1.b\bar{z_2} ) ?)

=|az_1 |^2+|bz_2 |^2+|bz_1 |^2+|az_2 |^2=(a^2+b^2 )(|z_1 |^2+|z_2 |^2 )

ii)\sqrt{-25}*\sqrt{-9}=5i*3i=15i^2=-15

iii) \frac{(1-i)^3}{1-i^3}=\frac{(1-i)^3}{(1-i)(1+i+i^2 )}

=\frac{(1-i)^3}{(1+i-1) }= \frac{1+i^2-2i}{}i

=\frac{1-1-2i}{i}=-\frac{2i}{i}=-2

iv) i+i^2+i^3+...+i^{1000}=0 \left [ \sum_{n=1}^{1000}i^n=0 \right ]

v) \frac{1}{1+i}=1*\frac{1-i}{(1+i)(1-i)} =\frac{1}{2} (1-i)

vi) Let z_1=x_1+iy_1 \: \: and \: \: z_2=x_2+iy_2

z_1+z_2=(x_1+x_2 )+i(y_1+y_2 )

If z_1+z_2 is real, then  y_1+y_2=0

y_1=-y_2

z_2=x_2-iy_1

z_2=x_1-iy_1 (\: \: when\: \: x_1=x_2 )

So, z_2=\bar{z_1}

vii) arg (z)+arg (\bar{z} )

If\: \: arg (z)= \theta , then \arg (\bar{z})=-\theta

\theta+(-\theta)=0

viii) |z+4|\leq 3

=|z+4-3|\leq|z+4|+|-3|

=|z+4-3|\leq3+3

=|z+4-3|\leq6

The greatest value is 6 and the least value of  |z+1| is 0

ix)\frac{z-2}{z+2}=\frac{\pi}{6}

Let z=x+iy

\left |\frac{x+iy-2}{x+iy+2} \right |=\left |\frac{(x-2)+iy}{(x+2)+iy} \right |= \frac{\pi}{6}

6|(x-2)+iy|=\pi|(x+2)+iy|

6\sqrt{(x-2)^2+y^2 }=\pi\sqrt{(x+2)^2+y^2 }

36[x^2+4-4x+y^2 ]=\pi ^2[x^2+4+4x+y^2 ]

36x^2+144-144x+36y^2=\pi^2 x^2+4\pi^2+4\pi^2 x+\pi^2 y^2

(36-\pi^2 ) x^2+(36-\pi^2 )-(144+4\pi^2 )x+144-4\pi^2=0

which represents the equation of a circle

x) |z|=4  and  arg (z) = \frac{5\pi}{6}

Let z=x+iy

|z|= \sqrt{x^2+y^2} =4

x^2+y^2=16

arg(z)=\tan^{-1}\frac{y}{x}=\frac{5\pi}{6}

\frac{y}{x}=\tan\left ( \pi-\frac{\pi}{6} \right )

=-\tan \frac{\pi}{6}=-\frac{1}{\sqrt{3}}

x=-\sqrt3 y

(-\sqrt3 y)^2+y^2=16

3y^2+y^2=16

4y^2=16

y^2=4

y=\pm2

x=-2\sqrt3

z=-2\sqrt3+2i

 

 

 

Posted by

infoexpert21

View full answer