Q2. If $\mathrm{h}=10 \mathrm{~cm}, \mathrm{c}=6 \mathrm{~cm}, \mathrm{~b}=12 \mathrm{~cm}, \mathrm{~d}=4 \mathrm{~cm}$, find the values of each of its parts separately and add to find the area $WXYZ$. Verify it by putting the values of h, a and b in the expression $\frac{h(a+b)}{2}$
Area of trapezium $WXYZ$ = Area of triangle with base'c'+area of rectangle +area of triangle with base 'd'
$ =\left(\frac{1}{2} \times c \times h\right)+(b \times h)+\left(\frac{1}{2} \times d \times h\right)$
$=\left(\frac{1}{2} \times 6 \times 10\right)+(12 \times 10)+\left(\frac{1}{2} \times 4 \times 10\right)$
$=(30)+(120)+(20)$
$=170 \mathrm{~cm}^2$
The area $WXYZ$ by the expression $\frac{h(a+b)}{2}$
$=\frac{10(22+12)}{2}$
$=\frac{10(34)}{2}$
$=10 \times 17$
$=170 \mathrm{~cm}^2$
Hence, we can conclude area from the given expression and the calculated area is equal.