Get Answers to all your Questions

header-bg qa

Q: If the intercept of a line between the coordinate axes is divided by the point (–5, 4) in the ratio 1:2, then find the equation of the line.

Answers (1)

Let a and b be the intercepts on the given line  

Coordinates of A and B are (a,0)and (0,b) respectively.  

Using the section formula we find the value of a and b  

\left ( x,y \right )=\left ( \frac{m_{1}x_{2}+m_{2}x_{1}}{m_{1}+m_{2}}, \frac{m_{1}y_{2}+m_{2}y_{1}}{m_{1}+m_{2}}\right )

\left ( -5,4\right )=\left ( \frac{1*0+2*a}{1+2}, \frac{1*b+2*0}{1+2}\right )=\left (\frac{2a}{3},\frac{b}{3} \right )

-5=\frac{2a}{3} and 4=\frac{b}{3}

-15=2a and b=12

a=-\frac{15}{2} and b=12

Coordinates of A and B are \left ( -\frac{15}{2},0 \right ) and \left ( 0 , 12 \right )

Equation of line AB  y-0 = \frac{12-0}{0-\left ( -\frac{15}{2} \right )}\left ( x- \left ( -\frac{15}{2} \right ) \right )

y = \frac{12}{\frac{15}{2}}\left ( x+\frac{15}{2} \right )

y =\frac{24}{15}\left ( x+\frac{15}{2} \right )

y =\frac{8}{5}x+15

5y=8x+60

Hence, the required equation is 8x-5y+60=0

Posted by

infoexpert22

View full answer