Get Answers to all your Questions

header-bg qa

If x occurs expansion of \left (x^{n}+\frac{1}{x} \right )^{2n} then prove that its coefficient is \frac{\left ( 2n \right )!}{\left ( \frac{4n-p}{3} \right )!\left ( \frac{2n+p}{3} \right )!}

Answers (1)

Given: (x2 + 1/x)2n

Thus, Tr+1 =2nCr(x2)2n-r(1/x)r

                 = 2nCrx4n-3r

Now, if xn will occur in the expansion, then,

Let us consider 4n – 3r = p

Thus,

3r = 4n – p

r = 4n – p/3

Thus, coefficient of xp = 2nCr

                                               = (2n)!/r!(2n-r)!

                                               = \frac{\left ( 2n \right )!}{\left ( \frac{4n-p}{3} \right )!\left ( \frac{2n+p}{3} \right )!}

Posted by

infoexpert22

View full answer