Get Answers to all your Questions

header-bg qa

Let A=\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right], B=\left[\begin{array}{ll} 4 & 0 \\ 1 & 5 \end{array}\right], C=\left[\begin{array}{cc} 2 & 0 \\ 1 & -2 \end{array}\right] and a = 4, b = -2.

Show that: (AT)^{}T = A

Answers (2)

To prove: (AT)^{}T = A

In transpose of a matrix, the rows of the matrix become the columns.

\\\text { LHS }=\left(A^{T}\right)^{T}\\=\left(\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right]^{\mathrm{T}}\right)^{\mathrm{T}}=\left[\begin{array}{cc} 1 & -1 \\ 2 & 3 \end{array}\right]^{\mathrm{T}}=\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right]=\mathrm{A}=\mathrm{RHS}

Hence, proved.

Posted by

infoexpert22

View full answer

To prove: (AT)^{}T = A

In transpose of a matrix, the rows of the matrix become the columns.

\text { LHS }=\left(A^{\top}\right)^{\top}=\left(\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right]^{\mathrm{T}}\right)^{\mathrm{T}}=\left[\begin{array}{cc} 1 & -1 \\ 2 & 3 \end{array}\right]^{\mathrm{T}}=\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right]=\mathrm{A}=\mathrm{RHS}

Hence, proved.

Posted by

infoexpert22

View full answer