Get Answers to all your Questions

header-bg qa

Prove that the area of the equilateral triangle drawn on the hypotenuse of a right-angled triangle is equal to the sum of the areas of the equilateral triangles drawn on the other two sides of the triangle.

Answers (1)

Let PQR is a right angle triangle which is a right angle at point R.

PR = b, RQ = a

Three equilateral triangles are drawn on the sides of triangle PQR: PRS, RTQ, and PUQ

Let x_{1},x_{2} and x_{3} are the areas of equilateral triangles respectively

To prove:- x_{1}+x_{2}=x_{3}

Using Pythagoras theorem in \Delta PQR we get

PQ^{2}+RQ^{2}+RP^{2}

PQ^{2}=a^{2}+b^{2}

PQ=\sqrt{a^{2}+b^{2}}

The formula for the area of an equilateral triangle is

=\frac{\sqrt{3}}{4}\left ( side \right )^{2}

\therefore Area of equilateral \Delta RTQ

x_{1}=\frac{\sqrt{3}}{4}\left ( a^{2} \right )\; \; \; \; \; \; \; \; ....(1)

Area of equilateral \Delta RSP

x_{2}=\frac{\sqrt{3}}{4} b^{2} \; \; \; \; \; \; \; \; ....(2)

Area of equilateral \Delta PQU

x_{3}=\frac{\sqrt{3}}{4}\left ( \sqrt{a^{2}+b^{2}} \right )^{2}                    \left ( Q\; PQ=\sqrt{a^{2}+b^{2}} \right )  

x_{3}=\frac{\sqrt{3}}{4} \left ( a^{2}+b^{2} \right )

add equation (1) and (2) we get

x_{1}+x_{2}=\frac{\sqrt{3}}{4}a^{2}+\frac{\sqrt{3}}{4}b^{2}

x_{1}+x_{2}=\frac{\sqrt{3}}{4}\left ( a^{2}+b^{2} \right )=x_{3}

Hence x_{1}+x_{2}=x_{3}

Hence proved

Posted by

infoexpert23

View full answer