Get Answers to all your Questions

header-bg qa

The differential equation of the family of curves y^{2}=4 a(x+a) is
(a) y^{2}=4 \frac{d y}{d x}\left(x+\frac{d y}{d x}\right)
(b) 2 y \frac{d y}{d x}=4 a
(c) \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=0
(d) 2 x \frac{d y}{d x}+y\left(\frac{d y}{d x}\right)^{2}-y=0

Answers (1)

Ans: - The answer is the option (d) 2 x \frac{d y}{d x}+y\left(\frac{d y}{d x}\right)^{2}-y=0

Explanation: -

y^{2}=4 a(x+a) ....(1)

On differentiating both sides w.r.t. x, we get
2 y \frac{d y}{d x}=4 a
\Rightarrow \quad \frac{1}{2} y \frac{d y}{d x}=a
On putting the value of "a" in Equation. (1), we get
y^{2}=2 y \frac{d y}{d x}\left(x+\frac{1}{2} y \frac{d y}{d x}\right)
\Rightarrow \quad y^{2}=2 x y \frac{d y}{d x}+y^{2}\left(\frac{d y}{d x}\right)^{2}
\Rightarrow \quad 2 x \frac{d y}{d x}+y\left(\frac{d y}{d x}\right)^{2}-y=0

Posted by

infoexpert22

View full answer