Get Answers to all your Questions

header-bg qa

6. The following fractions represent just three different numbers. Separate them into three groups of equivalent fractions, by changing each one to its simplest form.

            (a) \frac{2}{12}

            (b) \frac{3}{15}

            (c) \frac{8}{50}

           (d) \frac{16}{100}

           (e) \frac{10}{16}

           (f) \frac{15}{75}

           (g) \frac{12}{60}

           (h) \frac{16}{96}

            (i) \frac{12}{75}

           ( j) \frac{12}{72}

           (k) \frac{3}{18}

            (l) \frac{4}{25}

Answers (1)

best_answer

(i)   \frac{2}{12}\times \frac{\frac{1}{2}}{\frac{1}{2}}\ =\ \frac{1}{6}

(ii)   \frac{3}{15}\times \frac{\frac{1}{3}}{\frac{1}{3}}\ =\ \frac{1}{5}

(iii)   \frac{8}{50}\times \frac{\frac{1}{2}}{\frac{1}{2}}\ =\ \frac{4}{25}

(iv)   \frac{16}{100}\times \frac{\frac{1}{4}}{\frac{1}{4}}\ =\ \frac{4}{25}

(v)    \frac{10}{16}\times \frac{\frac{1}{2}}{\frac{1}{2}}\ =\ \frac{5}{8}

(vi)   \frac{15}{75}\times \frac{\frac{1}{15}}{\frac{1}{15}}\ =\ \frac{1}{5}

(vii)   \frac{12}{60}\times \frac{\frac{1}{12}}{\frac{1}{12}}\ =\ \frac{1}{5}

(viii)   \frac{16}{96}\times \frac{\frac{1}{16}}{\frac{1}{16}}\ =\ \frac{1}{6}

(ix)    \frac{12}{75}\times \frac{\frac{1}{3}}{\frac{1}{3}}\ =\ \frac{4}{25}

(x)    \frac{12}{72}\times \frac{\frac{1}{12}}{\frac{1}{12}}\ =\ \frac{1}{6}

(xi)   \frac{3}{18}\times \frac{\frac{1}{3}}{\frac{1}{3}}\ =\ \frac{1}{6}

(xii)  \frac{4}{25}

Posted by

Devendra Khairwa

View full answer