Get Answers to all your Questions

header-bg qa

The result  \tan^{-1}x-\tan^{-1}\left ( \frac{x-y}{1+xy} \right ) is true when value of xy is _________.

 

Answers (1)

The result \tan^{-1}x-\tan^{-1}\left ( \frac{x-y}{1+xy} \right ) is true when value of xy is > -1.

We have,

\tan^{-1}x-\tan^{-1}=\tan^{-1} \frac{x-y}{1+xy}

Principal range of tan-1a is  \left ( -\frac{\pi}{2},\frac{\pi}{2} \right )

Let tan-1x = A and tan-1y = B … (1)

So, A,B  \epsilon \left ( -\frac{\pi}{2},\frac{\pi}{2} \right )

We know that, \tan\left ( A-B \right )=\frac{\tan A - \tan B}{1-\tan A \tan B }  … (2)

From (1) and (2), we get,

Applying, tan-1 both sides, we get,

\tan^{-1}\tan\left ( A-B \right )=\tan^{-1}\frac{x-y}{1-xy}

As, principal range of tan-1a is \left ( -\frac{\pi}{2},\frac{\pi}{2} \right )

So, for tan-1tan(A-B) to be equal to A-B,

A-B must lie in  \left ( -\frac{\pi}{2},\frac{\pi}{2} \right )– (3)

Now, if both A,B < 0, then A, B  \epsilon \left ( -\frac{\pi}{2},0\right )

∴ A \epsilon \left ( -\frac{\pi}{2},0\right )   and -B \epsilon \left ( 0,\frac{\pi}{2}\right )

So, A – B  \epsilon \left ( -\frac{\pi}{2},\frac{\pi}{2} \right )

So, from (3),

tan-1tan(A-B) = A-B

\Rightarrow \tan^{-1}x-\tan^{-1}y=\tan^{-1}\frac{x-y}{z+xy}

Now, if both A,B > 0, then A, B \epsilon \left ( 0,\frac{\pi}{2}\right )

∴ A \epsilon \left ( 0,\frac{\pi}{2}\right )  and -B  \epsilon \left ( -\frac{\pi}{2},0\right )

So, A – B  \epsilon \left ( -\frac{\pi}{2},\frac{\pi}{2} \right )

So, from (3),

tan-1tan(A-B) = A-B

\Rightarrow \tan{-1}x-\tan{-1}y=\tan^{-1}\frac{x-y}{z+xy}

Now, if A > 0 and B < 0,

Then, A \epsilon \left ( 0,\frac{\pi}{2}\right )   and B  \epsilon \left ( 0,\frac{\pi}{2}\right )

∴ A  \epsilon \left ( 0,\frac{\pi}{2}\right ) and -B  \epsilon \left ( 0,\frac{\pi}{2}\right )

So, A – B \epsilon (0,π)

But, required condition is A – B \epsilon \left ( -\frac{\pi}{2},\frac{\pi}{2} \right )

As, here A – B \epsilon (0,π), so we must have A – B \epsilon \left ( 0,\frac{\pi}{2} \right )

A-B< \frac{\pi}{2}

A< \frac{\pi}{2} +B
Applying tan on both sides,

\tan A< \tan\left ( \frac{\pi}{2} +B \right )

As, \tan\left ( \frac{\pi}{2} +\alpha \right )=-\cot \alpha

So, tan A < - cot B

Again,  \cot \alpha=\frac{1}{\tan \alpha}

So, \tan A< \frac{1}{\tan B}

⇒ tan A tan B < -1

As, tan B < 0

xy > -1

Now, if A < 0 and B > 0,

Then, A \epsilon \left ( -\frac{\pi}{2} ,0\right )  and B \epsilon \left ( 0,\frac{\pi}{2} \right )

∴ A \epsilon   \left ( -\frac{\pi}{2} ,0\right ) and -B \epsilon \left ( -\frac{\pi}{2} ,0\right )

So, A – B \epsilon (-π,0)

But, required condition is A – B \epsilon \left ( -\frac{\pi}{2} ,\frac{\pi}{2}\right )

As, here A – B \epsilon (0,π), so we must have A – B \epsilon \left ( -\frac{\pi}{2} ,0\right )

\Rightarrow A-B> -\frac{\pi}{2}

\Rightarrow A>B -\frac{\pi}{2}

Applying tan on both sides,

\tan A>\tan\left (B -\frac{\pi}{2} \right )

As, \tan\left (\alpha -\frac{\pi}{2} \right )=-\cot \alpha

So, tan B > - cot A

Again, \cot \alpha\frac{1}{\tan \alpha}

So, \tan B >-\frac{1}{\tan A}

⇒ tan A tan B > -1

⇒xy > -1

Posted by

infoexpert24

View full answer