Get Answers to all your Questions

header-bg qa

Explain solution for RD Sharma maths class 12 chapter 22 Algebra of vectors exercise 22.8 question 8 maths textbook solution

Answers (1)

Answer: \overrightarrow{d}  is expressible as linear combination of \overrightarrow{a},\overrightarrow{b} & \overrightarrow{c}

Hint: Express one vector in linear combination of the other two

\RightarrowGiven,

\begin{aligned} &\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k} \\ &\vec{b}=2 \hat{i}+\hat{j}+3 \hat{k} \\ &\vec{c}=\hat{i}+\hat{j}+\hat{k} \\ &\Rightarrow \vec{a}=x \vec{b}+y \vec{c} \\ &\Rightarrow \hat{i}+2 \hat{j}+3 \hat{k}=x(2 \hat{i}+\hat{j}+3 \hat{k})+y(\hat{i}+\hat{j}+\hat{k}) \\ &\Rightarrow \hat{i}+2 \hat{j}+3 \hat{k}=\hat{i}(2 x+y)+\hat{j}(x+y)+\hat{k}(3 x+y) \end{aligned}

Comparing coefficients of \hat{i} ,\hat{j} & \hat{k}

2x+y=1                                                       ...(1)

x+y=2                                                         ....(2)

3x+y=3                                                      ....(3)

Subtracting (1) and (2)

2x+y=1

\underline{x+y=2}

x             =-1

x+y=2

-1+y=2

y=3

Put, x=-1 and y=3

3x+y=3

L.H.S=3x+y

=3\left ( -1 \right )+3

=-3+3

=0

\neq R.H.S

Thus, \overrightarrow{a},\overrightarrow{b} & \overrightarrow{c} are non-coplanar

Now, expressing \overrightarrow{a}  as a linear combination of  \overrightarrow{a},\overrightarrow{b} & \overrightarrow{c} 

\begin{aligned} &\vec{d}=\vec{a} x+\vec{b} y+\vec{c} z \\ &\Rightarrow 2 \hat{i}-\hat{j}-3 \hat{k}=x(\hat{i}+2 \hat{j}+3 \hat{k})+y(2 \hat{i}+\hat{j}+3 \hat{k})+z(\hat{i}+\hat{j}+\hat{k}) \\ &\Rightarrow 2 \hat{i}-\hat{j}-3 \hat{k}=\hat{i}(x+2 y+z)+\hat{j}(2 x+y+z)+\hat{k}(3 x+3 y+z) \end{aligned}

Comparing co-efficient of \hat{i} ,\hat{j} & \hat{k} 

x+2y+z=2                                                       ...(1)

2x+y+z=-1                                                         ....(2)

3x+3y+z=-3                                                      ....(3)

Subtracting (1) and (2)

x+2y+z=2

\underline{2x+y+z=-1}

-x+y          =3

Subtracting (2) and (3)

2x+y+z=-1

\underline{3x+3y+z=-3}

-x-2y          =2

x+2y=-2                        .......(5)

Subtracting (4) and (5)

x-y=-3

\underline{x+2y=-2}

-3y=-1

y=\frac{1}{3}

Put y=\frac{1}{3}  in (4)

\begin{aligned} &x-\left(\frac{1}{3}\right)=-3 \\ &x=-3+\frac{1}{3} \\ &x=\frac{-8}{3} \end{aligned}

Put x=\frac{-8}{3}  & y=\frac{1}{3} in eq (1)

\begin{aligned} &x+2 y+z=2 \\ &\frac{-8}{3}+2\left(\frac{1}{3}\right)+z=2 \\ &\frac{-6}{3}+z=2 \\ &z=2+2 \\ &z=4 \end{aligned}

Hence, \overrightarrow{d}  is expressible as linear combination of \overrightarrow{a},\overrightarrow{b} & \overrightarrow{c}

Posted by

Infoexpert

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads