Get Answers to all your Questions

header-bg qa

Explain solution RD sharma class 12 chapter 23 scalar or dot product exercise Fill in the blanks question 18

Answers (1)

\frac{3}{5\sqrt{2}}Hint:

               \vec{a} and \vec{b} projection

Given:

               \vec{a}=2\hat{i}-\hat{j}+2\hat{k}  and \vec{b}=5\hat{i}-3\hat{j}-4\hat{k}

Solution:

\vec{a}=2\hat{i}-\hat{j}+2\hat{k} \\ \vec{b}=5\hat{i}-3\hat{j}-4\hat{k}

We know

Projection of vector  \vec{a} and \vec{b} =\frac{1}{|\vec{b}|} \cdot(\vec{a} \cdot \vec{b})

\begin{aligned} (\vec{a} \cdot \vec{b}) &=(2 \times 5)+(-1 \times-3)+(2 \times-4) \\ &=10+3-8 \\ &=5 \\ \end{aligned}

\begin{aligned} |\vec{b}| &=\sqrt{25+9+16} \\ &=\sqrt{25+25} \\ &=\sqrt{50} \end{aligned}

Projection of vector \vec{a} on \vec{b} =\frac{1}{\sqrt{2}.5} \times 5\\

                                                  =\frac{1}{\sqrt{2}}

 Projection of \vec{b} and \vec{a}   =\frac{1}{|\vec{a}|} \cdot(\vec{b} \cdot \vec{a})

\begin{aligned} \vec{b} \cdot \vec{a}=&(5 \times 2)+(-3 \times-1)+(-4 \times 2) \\ &=10+3-8 \\ &=5 \\ \end{aligned}

\begin{aligned} |\vec{a}|=& \sqrt{2^{2}+1^{2}+2^{2}} \\ =& \sqrt{4+1+4} \\ &=\sqrt{9}\end{aligned}           

        \begin{aligned} &=3 \\ &\frac{\text { Projection of } \vec{a} \text { and } \vec{b}}{\text { Projection of } \vec{b} \text { and } \vec{a}}=\frac{\frac{1}{\sqrt{2}}}{\frac{5}{3}} \\ &\qquad=\frac{3}{5 \sqrt{2}} \end{aligned}

Posted by

Info Expert 29

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads