Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 chapter Differential Equation exercise 21.3 question 20 maths

Answers (1)

Answer:

y=e^{-x}+a x+b  is a solution of differential equation

Hint:

Just differentiate two times to obtain values.

Given:

y=e^{-x}+a x+b

Solution:

y=e^{-x}+a x+b

Differentiating on both sides with respect to x

\begin{aligned} &\Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left(e^{-x}+a x+b\right) \\\\ &\Rightarrow \frac{d y}{d x}=-e^{-x}+a \end{aligned}            ................(i)

Differentiating equation (i)

\begin{aligned} &\Rightarrow \frac{d^{2} y}{d x^{2}}=-\left(-e^{-x}\right) \\\\ &\Rightarrow \frac{d^{2} y}{d x^{2}}=\left(e^{-x}\right) \\\\ &\Rightarrow e^{x} \cdot \frac{d^{2} y}{d x^{2}}=1 \end{aligned}

Thus, \Rightarrow y=e^{-x}+a x+b is a solution.

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads