Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 chapter Differentials Errors and Approximations exercise 13.1 question 12 maths

Answers (1)

Answer: 3.0021715

Hint: Here we use this below formula

\Delta y=f(x+\Delta x)-f(x)

Given:  \log _{10} e=0.4343

Solution: Let: y=f(x)=\log _{10} x

⇒  Here,

\begin{aligned} &x=1000 \\\\ &x+\Delta x=1005 \\\\ &\Delta x=5 \\\\ &d x=\Delta x=5 \end{aligned}

\begin{aligned} &\text { For } x=1000 \\\\ &y=\log _{10} 1000=\log _{10}(10)^{3}=3 \\\\ &\Rightarrow \text { Now } y=\log _{10} x=\frac{\log e x}{\log e 10} \\\\ &\frac{d y}{d x}=\frac{0.4343}{x} \end{aligned}

\begin{aligned} &\left(\frac{d y}{d x}\right)_{x=1000}=\frac{0.4343}{1000}=0.00043 \\\\ &\Delta y=d y=\frac{d y}{d x} \times d x=0.0004343 \times 5=3.0021715 \end{aligned}

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads