Get Answers to all your Questions

header-bg qa

explain solution RD Sharma class 12 chapter Differentiation exercise 10.4 question 16 maths

Answers (1)

Answer:

(1+x)^{2} \frac{d y}{d x}+1=0

Hint:

Use quotient rule and algebraic identities 

Given:

x \sqrt{1+y}+y \sqrt{1+x}=0

Solution:

\begin{aligned} &x \sqrt{1+y}+y \sqrt{1+x}=0 \\ &x \sqrt{1+y}=-y \sqrt{1+x} \end{aligned}

Squaring both the side,

(x \sqrt{1+y})^{2}=(-y \sqrt{1+x})^{2}

\begin{aligned} &x^{2}(1+y)=y^{2}(1+x) \\ &x^{2}+x^{2} y=y^{2}+x y^{2} \end{aligned}

x^{2}-y^{2}=x y^{2}-x^{2} y

(x+y)(x-y)=x y(y-x)                        \left[\because a^{2}-b^{2}=(a+b)(a-b)\right]

\begin{aligned} &(x+y)=-x y \\ &y+x y=-x \\ &y(1+x)=-x \end{aligned}

y=\frac{-x}{1+x}

Differentiate this above equation w.r.t x

\frac{d y}{d x}=\frac{d}{d x}\left(\frac{-x}{1+x}\right)

\frac{d y}{d x}=\frac{(1+x) \cdot \frac{d(-x)}{d x}-(-x) \cdot \frac{d(1+x)}{d x}}{(1+x)^{2}}                [Using quotient rule]

\frac{d y}{d x}=\frac{-(1+x)+x(0+1)}{(1+x)^{2}}                                \left[\because \frac{d\left(x^{n}\right)}{d x}=n x^{n-1}\right]

\begin{aligned} &\frac{d y}{d x}=\frac{-(1+x)+x}{(1+x)^{2}} \\ &\frac{d y}{d x}=\frac{-1-x+x}{(1+x)^{2}} \end{aligned}

\frac{d y}{d x}=-\frac{1}{(1+x)^{2}}

(1+x)^{2} \frac{d y}{d x}=-1

(1+x)^{2} \frac{d y}{d x}+1=0

Hence proved

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads