Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 chapter Differentiation exercise 10.5 question 36 maths

Answers (1)

Answer: \frac{d y}{d x}=-\left\{\frac{\left.x^{x}(1+\log x)+y^{x} \log y\right)}{x \cdot y^{(x-1)}}\right\}

Hint:  To solve this equation we denote both term as u and v

Given: x^{x}+y^{x}=1

Solution:  

        \frac{d u}{d x}+\frac{d v}{d x}=0

        u=x^{x}

Taking log on both sides,

        \log u=x \log x

on diff. we get

        \begin{aligned} &\frac{1}{u} \frac{d u}{d x}=x \frac{d}{d x}(\log x)+\log x \cdot \frac{d x}{d x} \\\\ &\frac{d u}{d x}=u\left(x \cdot \frac{1}{x}+\log x\right) \end{aligned}

        \begin{aligned} &\frac{d u}{d x}=x^{x}(\log x+1) \\\\ &v=y^{x} \end{aligned}

Taking log both side

\log v=x \log y

on diff. we get

        \frac{1}{v} \cdot \frac{d v}{d x}=x \cdot \frac{d}{d x}(\log y)+\log y \cdot \frac{d x}{d x}

        \begin{aligned} &\frac{d v}{d x}=v\left[\frac{x}{y} \cdot \frac{d y}{d x}+\log y\right] \\\\ &\frac{d v}{d x}=y^{x} \cdot\left[\frac{x}{y} \cdot \frac{d y}{d x}+\log y\right] \end{aligned}

Hence   \frac{d y}{d x}=-\left\{\frac{\left.x^{x}(1+\log x)+y^{x} \log y\right)}{x \cdot y^{(x-1)}}\right\}

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads