Get Answers to all your Questions

header-bg qa

need solution for rd sharma maths class 12 chapter 12 derivatives as a rate measure exercise fill in the blanks question 3

Answers (1)

Answer: 10\sqrt{2}\; or\; 14.14cm^{2}/s

Hint: Here, we use the length of diagonal \frac{ds}{dt}=0.5\; cm/s and l=\sqrt{2}a

Given:   \frac{dl}{dt}=0.5\; cm/s,Area = 400

Solution: \frac{d\left ( \sqrt{2}a \right )}{dt}=0.5

                          \frac{da}{dt}=\frac{0.5}{\sqrt{2}}

                           a^{2}=400

So, a = 20

                        \frac{da^{2}}{dt}=2\times \frac{20\times 0.5}{\sqrt{2}}=> 2\times \frac{10}{\sqrt{2}}

                                =10\sqrt{2}cm^{2}/sec

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads