Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma Maths Class 12 Chapter 22 Algera of Vectors Excercise 22.7 Question 4

Answers (1)

Answer:

8 

Hint:

As the given vectors are collinear, then use formula \overrightarrow{A B}=\lambda \overrightarrow{B C}

Given:

Three vectors are collinear.        

Solution:

Let,

\begin{aligned} &A=10 \hat{i}+3 \hat{j} \\ \end{aligned}

B=12 \hat{i}-5 \hat{j} \\

C=a \hat{i}+11 \hat{j}

So the above three points A, B and C represents three vectors collinear to each other

\begin{aligned} &\overrightarrow{A B}=(12 \hat{i}-5 \hat{j})-(10 \hat{i}+3 \hat{j}) \\ & \end{aligned}

=(12-10) \hat{i}+(-5-3) \hat{j} \\

=2 \hat{i}-8 \hat{j} \\

\overrightarrow{B C}=(a \hat{i}+11 \hat{j})-(12 \hat{i}-5 \hat{j}) \\

=(a-12) \hat{i}+(11+5) \hat{j} \\

=(a-12) \hat{i}+16 \hat{j}

As, A,B and C are collinear, then there exists  \overrightarrow{A B}=\lambda \overrightarrow{B C}

\therefore(2 \hat{i}-8 \hat{j})=\lambda(a-12) \hat{i}+\lambda 16 \hat{j}

Comparing

\begin{aligned} &-8 j=\lambda 16 \hat{j} \\ & \end{aligned}

-8=\lambda 16 \\

\lambda=\frac{-1}{2} \\

2 \hat{i}=\lambda(a-12) \hat{i} \\

2=\lambda(a-12)

Put the value of  \lambda

\begin{aligned} &2=\frac{-1}{2}(a-12) \\ \end{aligned}

-4=a-12 \\

a=8

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads