Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma Maths Class 12 Chapter 28 The Plane Excercise 28.11 Question 20

Answers (1)

Answer: Coordinates of intersection is  (2,-1,2), \sin ^{-1}\left(\frac{1}{\sqrt{27}}\right)

Hint: Use formula  \sin \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}

Given:  \frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{2} \text { and } x-y+z-5=0

Solution: Let  \frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{2}=r

            \Rightarrow x=3 r+2, y=4 r-1, z=2 r+2

Substituting in the equation of the plane  x-y+z-5=0  , We get,

            \begin{aligned} &(3 r+2)-(4 r-1)+(2 r+2)-5=0 \\ & \end{aligned}

             \Rightarrow 3 r+2-4 r+1+2 r+2-5=0 \\

             \Rightarrow r=0

             \begin{aligned} &x=3 \times 0+2 \Rightarrow x=2 \\ \end{aligned}

             y=4 \times 0-1 \Rightarrow y=-1 \\

             z=2 \times 0+2 \Rightarrow z=2

Hence, the coordinates of intersection is (2,-1,2)

Direction ratios of the line are  3, 4, 2

Direction ratios of the line perpendicular to the plane are 1, -1, 1

            \begin{aligned} &\sin \theta=\frac{3 \times 1+(-1) \times 4+2 \times 1}{\sqrt{3^{2}+4^{2}+2^{2}} \sqrt{1^{2}+(-1)^{2}+1^{2}}} \\ & \end{aligned}

            \sin \theta=\frac{3-4+2}{\sqrt{9+16+4} \sqrt{1+1+1}}

                      \begin{aligned} &=\frac{1}{\sqrt{29} \sqrt{3}} \\ \end{aligned}

                     =\frac{1}{\sqrt{87}}

                 \theta=\sin ^{-1}\left(\frac{1}{\sqrt{87}}\right)    

The angle between the plane and line is   \sin ^{-1}\left(\frac{1}{\sqrt{87}}\right)

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads