Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths Class 12 Chapter 28 The Plane Exercise 28.9 Question 9 textbook solution.

Answers (1)

Answer :  The answer of the given question is \lambda=4

Hint :

      P=\left|\frac{a x_{1}+b y_{1}+c z_{1}+d}{\sqrt{a^{2}+b^{2}+c^{2}}}\right|

Given : Points: (1,1,1) \text { and } x-y+z+\lambda=0 \text { be } 5

Solution :

The distance of the point (1,1,1) from the origin

We know, distance of \left(x_{1}, y_{1}, z_{1}\right) from the origin is \sqrt{x_{1}^{2}+y_{1}^{2}+z_{1}^{2}}

Putting values of x_{1}, y_{1}, z_{1}=1

Required distance =\sqrt{3}

Distance of the point  (1,1,1) from plane x-y+z+\lambda=0

We know, the distance of point \left(x_{1}, y_{1}, z_{1}\right) from the plane \pi=a x+b y+c z+d=0

Is given by

P=\left|\frac{a x_{1}+b y_{1}+c z_{1}+d}{\sqrt{a^{2}+b^{2}+c^{2}}}\right|

Putting necessary values,

\begin{aligned} &P=\left|\frac{1 \times 1+(-1) \times 1+1 \times 1+\lambda}{\sqrt{1^{2}+(-1)^{2}+1^{2}}}\right| \\ &P=\left|\frac{1+\lambda}{\sqrt{3}}\right| \end{aligned}

According to the question

\begin{aligned} &\left|\frac{1+\lambda}{\sqrt{3}}\right| \times \sqrt{3}=5 \\ &|1+\lambda|=5 \\ &1+\lambda=5 \text { Or } 1+\lambda=-5 \\ &\lambda=4 \text { Or } \lambda=-6 \end{aligned}

\lambda = 4 [\lambda \neq -6 Because distance cannot be negative]

Posted by

infoexpert23

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads