Get Answers to all your Questions

header-bg qa

need solution for RD Sharma maths class 12 chapter Differentiation exercise 10.2 question 3

Answers (1)

Answer: \frac{\pi}{180} \sec ^{2}\left(x^{\circ}+45^{\circ}\right)

Hint: You must know the rules of solving derivative of trigonometric function.

Given: \tan \left(x^{\circ}+45^{\circ}\right)

Solution:

y=\tan \left(x^{\circ}+45^{\circ}\right)

y=\left[\tan (x+45) \cdot \frac{\pi}{180}\right]   ...To convert degree into radian multiply by \frac{\pi }{180}

Differentiating with respect to x,

\frac{d y}{d x}=\frac{d}{d x}\left[\tan (x+45) \cdot \frac{\pi}{180}\right]

\frac{d y}{d x}=\frac{\pi}{180} \cdot \sec ^{2}[\mathrm{x}+45] \times \frac{d}{d x}(x+45) \frac{\pi}{180}                   [ using chain rule]

\frac{d y}{d x}=\frac{\pi}{180} \sec ^{2}\left(x^{\circ}+45^{\circ}\right)

\text { So, } \frac{d}{d x}\left[\tan \left(x^{\circ}+45^{\circ}\right)\right]=\frac{\pi}{180} \sec ^{2}\left(x^{\circ}+45^{\circ}\right)

 

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads