Get Answers to all your Questions

header-bg qa

need solution for RD Sharma maths class 12 chapter Differentiation exercise 10.2 question 65

Answers (1)

Answer: Proved

Hint: you must know the rules of derivative of exponential functions.

Given:    y=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}

Prove   \frac{d y}{d x}=1-y^{2}

Solution:

Let   y=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}

Differentiate with respect to x,use quotient rule

\frac{d y}{d x}=\frac{d}{d x}\left(\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right)

 

\frac{d y}{d x}=\left[\frac{\left(e^{x}+e^{-x}\right) \frac{d}{d x}\left(e^{x}-e^{-x}\right)-\left(e^{x}-e^{-x}\right) \frac{d}{d x}\left(e^{x}+e^{-x}\right)}{\left(e^{x}+e^{-x}\right)^{2}}\right] \cdot \cdot \frac{d}{d x} u \cdot v=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}

\frac{d y}{d x}=\left\{\frac{\left(e^{x}+e^{-x}\right)\left[\left(e^{x}-e^{-x}(-1)\right)\right]-\left(e^{x}-e^{-x}\right)\left[\left(e^{x}+e^{-x}(-1)\right)\right]}{\left(e^{x}+e^{-x}\right)^{2}}\right\}

\frac{d y}{d x}=\left[\frac{\left(e^{x}+e^{-x}\right)\left(e^{x}+e^{-x}\right)-\left(e^{x}-e^{-x}\right)\left(e^{x}-e^{-x}\right)}{\left(e^{x}+e^{-x}\right)^{2}}\right]

\frac{d y}{d x}=\left[\frac{\left(e^{x}+e^{-x}\right)^{2}-\left(e^{x}-e^{-x}\right)^{2}}{\left(e^{x}+e^{-x}\right)^{2}}\right]

\frac{d y}{d x}=1-\frac{\left(e^{x}-e^{-x}\right)^{2}}{\left(e^{x}+e^{-x}\right)^{2}}                        \left[y=\frac{\left(e^{x}-e^{-x}\right)}{e^{x}+e^{-x}}\right]

\frac{d y}{d x}=1-y^{2}

∴ Proved

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads