Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter Differentiation exercise 10.5 question 18 sub question (vi)

Answers (1)

Answer: e^{\sin x} \cos x+(\tan x)^{x} \cdot\left[\log (\tan x)+\frac{x \sec ^{2} x}{\tan x}\right]

Hint: Diff by e^{\sin x}

Given: e^{\sin x}+(\tan x)^{x}

Solution:  y=e^{\sin x}+(\tan x)^{x}

Let   z=(\tan x)^{x}

Take log on both sides

        \log z=x \log \tan x

Diff w.r.t x

        \frac{1}{z} \frac{d z}{d x}=\log \tan x+\frac{x \sec ^{2} x}{\tan x}

Thus

        \frac{d y}{d x}=e^{\sin x} \cos x+(\tan x)^{x} \cdot\left[\log (\tan x)+\frac{x \sec ^{2} x}{\tan x}\right]

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads