Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter Differentiation exercise 10.5 question 23

Answers (1)

Answer: \frac{d y}{d x}=e^{3 x} \cdot \sin 4 x .2 x\left[e^{3 x} \cdot \sin 4 x \cdot 2^{x}(3+4 \cot 4 x+\ln 2)\right]

Hint: Differentiate the equation taking log on both sides

Given: y=e^{3 x} \cdot \sin 4 x \cdot 2^{x}

Solution:  

                                            [\because \log A B=\log A+\log B]

        \ln y=\ln e^{3 x}+\ln \sin 4 x+\ln 2^{x}

Diff w.r.t x

        \frac{1}{y} \frac{d y}{d x}=\frac{1}{e^{3 x}} \cdot \cdot e^{3 x} \cdot 3+\frac{\cos 4 x}{\sin 4 x} \cdot 4+\ln 2

        \frac{d y}{d x}=e^{3 x} \cdot \sin 4 x .2 x\left[e^{3 x} \cdot \sin 4 x .2 x(3+4 \cot 4 x+\ln 2)\right]

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads