Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter Differentiation exercise 10.5 question 55

Answers (1)

Answer:   \frac{d y}{d x}=\frac{-\left(y^{x} \log y+x^{y-1} \cdot y+x^{x}(\log x+1)\right)}{\left(x^{y} \log y+y^{x-1} \cdot x\right)}

Hint: To solve this equation we solve this differently

Given: y^{x}+x^{y}+x^{x}=a^{b}

Solution:  Let uvw

        u+v+w=a^{b}

Diff w.r.t. x

        \begin{aligned} &\frac{d}{d x}(u+v+w)=\frac{d}{d x} a^{b} \\\\ &\frac{d u}{d x}+\frac{d v}{d u}+\frac{d w}{d v}=0 \\\\ &u=y^{x} \end{aligned}            ...........(1)

Taking log on both sides,

        \log u=\log y^{x} \quad\left[\because \log a^{b}=b \log a\right]

Diff w.r.t. u                              \left[\because \frac{d}{d x}(u v)=u v^{\prime}+v u^{\prime}\right]

        \frac{d}{d x}(\log u)=\frac{d}{d x}(x \log y) \quad\left[\because \frac{d}{d x} \log x=\frac{1}{x}\right]

        \begin{aligned} &\frac{1}{u} \frac{d u}{d x}=x \cdot \frac{1}{y} \frac{d y}{d x}+\log y(1) \\\\ &\frac{d u}{d x}=u\left(\frac{x}{y} \frac{d y}{d x}+\log y\right) \end{aligned}

   

     v=x^{y}                                ..............(2)

Taking log on both sides,

        \begin{aligned} &\log v=\log x^{y} \\\\ &\log v=y \log x \end{aligned}

Diff w.r.t

        \begin{aligned} &\frac{1}{v} \frac{d v}{d x}=y \cdot \frac{1}{x}+\log x \frac{d y}{d x} \\\\ &\frac{d v}{d u}=v\left(\frac{y}{x}+\log x \frac{d y}{d x}\right) \\\\ &w=x^{x} \end{aligned}        ..........(3)

Log on b.s.

        \begin{aligned} &\log w=\log x^{x} \\\\ &\log w=x \log x \end{aligned}

Diff w.r.t

        \frac{1}{w} \frac{d w}{d x}=x \cdot \frac{1}{x}+\log x(1)

From (1)       

          \frac{d u}{d x}+\frac{d v}{d x}+\frac{d w}{d x}=0

        y^{x}\left(\frac{x}{y} d y-\log y\right)+x^{y}\left(\frac{y}{x}+\log x \frac{d y}{d x}\right)+x^{x}(1+\log x)=0

        y^{x} \log y+y^{x-1} x \frac{d y}{d x}+x^{y} \log x \frac{d y}{d x}+x^{y-1} \frac{y}{x}+x^{x}(1+\log x)=0

        y^{x} \log y+x^{y} \cdot \frac{y}{x}+x^{x}(\log x+1)+y^{x-1} x \frac{d y}{d x}+x^{y} \log x \frac{d y}{d x}=0

        y^{x-1} \frac{d y}{d x}+x^{y} \log y \frac{d y}{d x}=-\left(y^{x} \log x+x^{y} \cdot \frac{y}{x}+x^{x}(\log x+1)\right.

        \frac{d y}{d x}=\frac{-\left(y^{x} \log y+x^{y-1} y+x^{x}(\log x+1)\right)}{\left(x^{y} \log y+y^{x-1} x\right)}

                 

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads