Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter Maxima and Minima exercise 17.5 question 46.

Answers (1)

t = 2

Hint: For maxima and minima value of V, we must have \frac{dV}{dt}=0

Given:

\begin{aligned} &S=\frac{t^{4}}{4}-2 t^{3}+4 t^{2}-7 \\ &V=\frac{d S}{d t}=t^{3}-6 t^{2}+8 t \\ &a=\frac{d V}{d t}=3 t^{2}-12 t+8 \end{aligned}

Solution:

\frac{dV}{dt}=0

3t^2-12t+8 =0

On solving the equatin we get

t=2\pm \frac{2}{\sqrt{3}}

Now,

\begin{aligned} &\frac{d^{2} V}{d t^{2}}=6 t-12 \\ &\text { At } t=2 \pm \frac{2}{\sqrt{3}} \\ &\frac{d^{2} V}{d t^{2}}=6\left(2 \pm \frac{2}{\sqrt{3}}\right)-12,=\frac{-12}{3}<0 \end{aligned}

So, the velocity is maximum at t = 2-\frac{2}{\sqrt{3}}

Again,

\frac{da}{dt}=6t-12

For maximum or minimum value of a

\frac{da}{dt}=0

6t-12=0

t=2

Now,  \frac{d^2a}{dt^2}=6>0

So acceleration is minimum at t = 2

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads