Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter Maxima and Minima exercise Multiple Choice question, question 19.

Answers (1)

Answer: option(d)  \frac{2}{3}

Hint: For local maxima or minima, we must have f'(x)=0.

Given: h=R+\sqrt{R^2-r^2}

Solution:

We have,

Solution:

AB=2r

OC=r

CD =R+h                                                     

We have,

h=R+\sqrt{R^2-r^2}

h-R=\sqrt{R^2-r^2}    

Squaring on both sides,

(h-R)^=(\sqrt{R^2-r^2})^2

h^2+R^2-2hR=R^2-r^2

r^2=2hR-h^2                                                                                                 …(i)

Now,

V=\frac{1}{3}\pi r ^2h

V=\frac{\pi}{3}(2hR-h^2)h                        …using equation(i)

\begin{aligned} &V=\frac{\pi}{3}\left(2 h^{2} R-h^{3}\right) \\ &\frac{d V}{d h}=\frac{\pi}{3}\left(4 h R-3 h^{2}\right) \end{aligned}                                                       

For maxima and minima  \frac{dV}{dh}=0

\begin{aligned} &\Rightarrow \frac{\pi}{3}\left(4 h R-3 h^{2}\right)=0 \\ &\Rightarrow 4 h R-3 h^{2}=0 \\ &\Rightarrow 3 h^{2}=4 h R \\ &\Rightarrow h=\frac{4 R}{3} \end{aligned}

Now,

\frac{d^{2} V}{d h^{2}}=\frac{\pi}{3}(4 R-6 h)=\frac{\pi}{3}\left(4 R-6 \times \frac{4 R}{3}\right)=\frac{\pi}{3} 4 R\left(1-\frac{6}{3}\right)=\frac{\pi}{3} 4 R\left(\frac{-3}{3}\right)=-\frac{4 \pi R}{3}<0

Volume is maximum, when  h=\frac{4R}{3}

h=\frac{2(2R)}{3}

\frac{h}{2R}=\frac{2}{3}

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads