Get Answers to all your Questions

header-bg qa

Please solve rd sharma class 12 chapter 12 derivatives as a rate measure exercise fill in the blanks question 9 maths textbook solution

Answers (1)

Answer: \frac{15}{13}cm/s

Hint: Here we use the concept of acceleration and velocity

Given: V= 5x-\left ( x^{2}/6 \right )

Solution: So,

                \frac{dV}{dt}=5\times \frac{dx}{dt}-\frac{x}{3}\times \frac{dx}{dt}           

                \frac{dx}{dt}=\frac{\frac{dV}{dt}}{5-\left ( \frac{x}{3} \right )}

When x=2 and  \frac{dV}{dt}=5cm^{3}/sec

                \frac{dx}{dt}=\frac{5}{5-\frac{2}{3}}=\frac{15}{13}cm/s

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads